src/LazyBinomialHeap.js
import LazyStack from './LazyStack.js';
export default function LazyBinomialHeap(BinomialTree) {
const lazy_binomial_heap_push = function (lazy, tree, rank) {
// Lightweight binomial heap containing a unique tree
const sequence = [];
// Offset tree by its rank
let i = rank;
while (i--) {
sequence.push(null);
}
sequence.push(tree);
// Do not merge the generated sequence immediately
lazy.push(sequence);
};
const merge = function (compare, list, other) {
if (other.length === 0) {
return;
}
// Merging two binomial heaps is like
// adding two little endian integers
// so, we first make sure that we have
// enough place to store the result
let i = other.length - list.length;
while (i-- > 0) {
list.push(null);
}
let carry = null;
const len = list.length;
// Remember len >= other.length
for (i = 0; i < len; ++i) {
// Other[i] can be either null or not
// list[i] can be either null or not
// carry can be either null or not
// --> 2^3 = 8 possibilities
//
// null ? | other[i] | list[i] | carry
// ---------------------------------------
// (0) | no | no | no
// (1) | no | no | yes
// (2) | no | yes | no
// (3) | no | yes | yes
// (4) | yes | no | no
// (5) | yes | no | yes
// (6) | yes | yes | no
// (7) | yes | yes | yes
if (i >= other.length || other[i] === null) {
if (carry !== null) {
// (6) other[i] = null and list[i] = null and carry != null
// --> put carry in current cell
if (list[i] === null) {
list[i] = carry;
carry = null;
}
// (4) other[i] = null and list[i] != null and carry != null
// --> merge carry with current cell
else {
carry = carry.merge(compare, list[i]);
list[i] = null;
}
}
// We do not need to do anything for
// those 2 cases (carry and other[i] are null).
// ==
// (5) other[i] = null and list[i] != null and carry = null
// (7) other[i] = null and list[i] = null and carry = null
}
// (0) other[i] != null and list[i] != null and carry != null
// (2) other[i] != null and list[i] = null and carry != null
// --> merge carry with other[i]
else if (carry !== null) {
carry = carry.merge(compare, other[i]);
}
// (1) other[i] != null and list[i] != null and carry = null
// --> merge current cell with other[i]
else if (list[i] !== null) {
carry = list[i].merge(compare, other[i]);
list[i] = null;
}
// (3) other[i] != null and list[i] = null and carry = null
// --> put other[i] in list
else {
list[i] = other[i];
}
}
// Do not forget to append last carry
if (carry !== null) {
list.push(carry);
}
};
const lazy_binomial_heap_pop = function (compare, list, lazy) {
// Amortized merge of stored values
while (!lazy.empty()) merge(compare, list, lazy.pop());
// Standard O(log n) optimum search method
const len = list.length;
// There MUST be at least one
// non null element in this list
// we look for the first one
let j = 0;
for (; j < len - 1 && list[j] === null; ++j);
// Here j is necessarily < len
// and list[j] is non null
let i = j;
let opt = list[j].value;
// We lookup remaining elements to see if there
// is not a better candidate
for (++j; j < len; ++j) {
const item = list[j];
if (item !== null) {
const candidate = item.value;
if (compare(candidate, opt) < 0) {
i = j;
opt = candidate;
}
}
}
const orphan = list[i].children;
list[i] = null;
// We just removed the ith element
// if list[i] is the last cell
// of list we can drop it
if (i === len - 1) {
list.pop();
}
// We store the children in the
// lazy list
lazy.push(orphan);
return opt;
};
const Heap = function (compare) {
// The compare function to use to compare values
this.compare = compare;
// Number of elements in this heap
this.length = 0;
// List of binomial trees
this.list = [];
// List of binomial heaps waiting to be merged
this.lazy = new LazyStack();
};
Heap.prototype.pop = function () {
if (this.length === 0) {
return undefined;
}
--this.length;
return lazy_binomial_heap_pop(this.compare, this.list, this.lazy);
};
Heap.prototype.push = function (value) {
++this.length;
// Push a new tree of rank 0
return lazy_binomial_heap_push(this.lazy, new BinomialTree(value, []), 0);
};
Heap.prototype.merge = function (other) {
this.lazy.meld(other.lazy);
this.length += other.length;
return this;
};
return Heap;
}